Math 321

Linear Algebra

February 3, 2006

Quiz 2

Spring 2006

Name: Key (blue)

1. Consider the matrix

$$A = \begin{pmatrix} 1 & 3 & -1 \\ 2 & 2 & 3 \end{pmatrix}$$

and the vector

$$X = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.$$

Compute AX.

$$\binom{13-1}{223}\binom{1}{6} = \binom{0}{5}$$

2. Let A be a vector in \mathbb{R}^n . Suppose that both $X,Y\in\mathbb{R}^n$ satisfy the equation

$$(*) A \cdot X = 0,$$

that is $A \cdot Y = 0$ also. Show that X - 2Y is also a solution to (*). O $A \cdot (X - 2Y) = A \cdot X + A \cdot (-2Y) = A \cdot X - 2A \cdot Y = O$ $\Rightarrow X - 2Y \text{ is also a solution to } (*)$

Math 321

Linear Algebra

February 3, 2006

Quiz 2

Spring 2006

Name: Key (while)

- 1. Let A be a vector in \mathbb{R}^n . Suppose that both $X,Y\in\mathbb{R}^n$ satisfy the equation
- $(*) A \cdot X = 0,$

that is $A \cdot Y = 0$ also. Show that 2X - Y is also a solution to (*). O $A \cdot (2X - Y) = A \cdot (2X) + A \cdot (-Y) = 2A \cdot (X - A \cdot Y) = O$ $\Rightarrow 2X - Y \text{ is a Solution } fo(X).$

2. Consider the matrix

$$A = \begin{pmatrix} 1 & -1 & -3 \\ 1 & 2 & 2 \end{pmatrix}$$

and the vector

$$X = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

Compute AX.

$$\binom{1-1}{2}\binom{3}{0}\binom{1}{0}=\binom{0}{3}$$